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A conservative 2D model of inundation �ow with
solute transport over dry bed
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SUMMARY

In this paper, a transient 2D coupled vertically averaged �ow=transport model is presented. The model
deals with all kind of bed geometries and guarantees global conservation and positive values of both
water level and solute concentration in the transient solution. The model is based on an upwind �nite
volume method, using Roe’s approximate Riemann solver. A speci�c modi�cation of the Riemann
solver is proposed to overcome the generation of negative values of depth and concentration, that can
appear as a consequence of existing wetting=drying and solute advance fronts over variable bed levels,
or by the generation of new ones when dry areas appear. The numerical stability constraints of the
explicit model are stated incorporating the in�uence of the �ow velocity, the bed variations and the
possible appearance of dry cells. Faced to the important restriction that this new stability condition can
impose on the time step size, a di�erent strategy to allow stability using a maximum time step, and in
consequence a minimum computational cost is presented. Copyright ? 2006 John Wiley & Sons, Ltd.
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INTRODUCTION

Many engineering and environmental problems involve the study of unsteady water �ows with
solute transport. River �ows, in particular, are mostly unsteady and, as they are character-
ized by the presence of a vertical scale much smaller than the horizontal one, they can be
described by the shallow-water model [1] which forms a set of nonlinear hyperbolic equa-
tions. The prediction of unsteady �ows in a river is important because of the huge impacts
on property, human life and environment. A great deal of work has been devoted to develop
1D and 2D numerical models for unsteady shallow �ows in the last decades and various
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1060 J. MURILLO ET AL.

computational techniques using �nite di�erence, �nite element and �nite volume methods
have been reported [1–6]. Several numerical di�culties must be adequately treated to obtain
an accurate solution without numerical errors. Zhao et al. [7] provided a good historic revi-
sion and the features required for a two-dimensional river �ow simulation model: it should
be able to handle complex topography, dry bed advancing fronts, wetting–drying moving
boundaries, high roughness values, steady or unsteady �ow and subcritical or supercritical
conditions.
Among the numerical techniques reported, those belonging to the category of conservative

methods have gained acceptance in recent years for their important property of providing a
proper discrete representation of the physical conservation laws. Essentially imported from
gas dynamics, they have been extended to shallow-water problems trying to overcome the
relevant di�erences existing between these two applications. Natural topographies is the main
challenge. This involves positive and negative bed slopes that can be steep in many places
rendering dominant the bed slope source terms. Dominant source terms and open boundaries
are two important di�culties to face when using a conservative method since they both can
damage the conservative character of the solution. This topic is addressed in this paper in
direct connection with the stability limits of the model. In realistic problems of transient water
�ow, variable bed levels are always linked to inundation over dry areas.
Wet=dry and dry=wet interfaces between interior cells have traditionally represented a dif-

�culty for modellers wanting to solve the shallow-water equations over a bed of irregular
geometry. Flow over dry bed involves a complicated situation that can be analysed as a
boundary condition which is dynamically changing in time with the moving front and con-
tinuously expanding or reducing the �ow domain. Akanbi and Katopodes [8] gave a brief
summary of problems encountered in the numerical simulation of �ood waves propagating
over dry bed. The alternative is to include the wet=dry interfaces in the full domain of com-
putation in which there may be wet cells and dry cells at the same time. In this case, the
numerical scheme chosen for the discretization must be able to cope with them. In general,
cells being �ooded or dried during the computation tend to introduce numerical instabilities
in the solution, resulting for example in negative water depths or unphysical high velocities.
Di�erent approaches have been proposed to handle them. These techniques include modi�ed
equations in very shallow regions [9], shock capturing schemes [10] or the assumption that
a cell is dry if water depth is below a small critical value [11]. Be�a and Connel [12] re-
ported numerical oscillations when cells switch from dry to wet or vice-versa. George and
Stripling [13] represented the local bathymetry in each cell by a sloping facet rather than
by a �at bed to eliminate the spurious shocks in their �nite volume model. Some authors
working with �nite elements solve the problem by allowing the controlled use of negative
depths [14–16]. Bradford and Sanders [17] used Neumann extrapolation of the velocity in
partially wet cells to bypass the incorrect estimation of pressure and body forces in such
cells. In Brufau et al. [18, 19], driven by the interest of controlling numerical stability and
global mass conservation, a two-dimensional model was presented for unsteady �ow simula-
tion where the main strategy was based on a local rede�nition of the bed slope at speci�c
locations.
In this paper, a coupled shallow �ow=transport two-dimensional �nite volume model is

formulated exclusively from the point of view of the in-going contributions to the cells of
the domain. From the analysis of the waves involved in the upwind �nite volume scheme,
the time step restriction or stability region is studied in the linear homogeneous case and
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a general rule valid for structured and unstructured grids is provided. When source terms
are present in the equations, both the �ux of information exchanged across the cell edge
and the �nal state at the neighbour cells depend on them. This leads to a rede�nition of
the stability condition that must be a function not only of the eigenvalues of the problem
but also of the source terms themselves. The modi�cation of the stability region of di�erent
numerical schemes in a linear approach has previously been stated [20]. It has been proved
that noncentred discretization of the source term enlarges the stability region. Furthermore,
when not only source terms are important but also dry=wet interfaces appear in the simu-
lation domain, the stability condition becomes even more restrictive. In order to be able to
use the largest time step possible, compatible with stability and volume conservation, a mod-
i�cation of the model, equivalent to the local rede�nition of the bed slopes, is presented.
The new model is conservative, ensures bounded values of concentration in all situations
and avoids negative water depths, for both existing and generated wetting=drying advance
fronts when new dry areas appear. Despite the notable di�erence in the size of the allowed
time steps, no di�erence in the numerical solutions appears, as several numerical examples
demonstrate.
A �rst test case of circular dam break �ow is used to analyse the properties on the

numerical solution for the concentration in exacting conditions. This example shows that
the concentration can become unrealistically unbounded as a consequence of the conservative
formulation and that the correction proposed in the model is good to control those situations.
A second test case of still water with concentration surrounding a prism emerging from water
is presented to show the convenience of applying the suggested numerical treatment at the
wet=dry limits and the in�uence of this part of the solution over the concentration values.
A test case of unsteady oscillatory �ow in a parabolic vessel with analytical solution has
been used to validate the unsteady model. An initial concentration has been added to this test
case in order to validate the coupled solution in absence of di�usion. Finally, an example of
unsteady �ow over dry bed with solute transport in a river reach physical model is included
as application of the proposed simulation model.

GOVERNING EQUATIONS

The two-dimensional shallow-water equations, which represent mass and momentum conser-
vation in a plane, can be obtained by depth averaging the Navier–Stokes equations. Neglecting
di�usion of momentum due to viscosity and turbulence, wind e�ects and the Coriolis
term, they form a system of equations [21]. In the context of a depth-averaged model,
the depth-averaged concentration is of primary interest, and it has been shown that, under
special conditions, an advection–dispersion model [22] can be de�ned. Traditionally, both
models have been solved independently in a sequential form, solving �rst the shallow-water
equations and next, in function of those �ow values, the solute �ow equation. In order to
improve the accuracy and conservation properties of the solution, both models are coupled in
a single system of equations [23], that becomes:

@U
@t
+

@F(U)
@x

+
@G(U)

@y
=S(x; y;U) (1)
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where

U= (h; qx; qy; h�)T

F=
(
qx;

q2x
h
+

gh2

2
;
qxqy

h
; h�u

)T
; G=

(
qy;

qxqy

h
;
q2y
h
+

gh2

2
; h�v

)T
S= (0; gh(Sox − Sfx); gh(Soy − Sfy); ∇̃(Kh∇̃�))T

(2)

where h represents the water depth, qx= uh and qy= vh, with (u; v) the depth-averaged com-
ponents of the velocity vector u along the x and y coordinates, respectively, � represents
the depth-averaged concentration, g is the acceleration of the gravity, Sox and Soy are the bed
slopes along the x and y coordinates, respectively, Sfx and Sfy are the friction losses along
the x and y coordinates, respectively, and K is the empirical di�usion matrix.
The source term vector is split in three di�erent parts treated separately: bottom variations

B, di�usion term D, and friction term R : S=B+D+R.

B= (0; ghSox; ghSoy; 0)T

D= (0; 0; 0; ∇̃(Kh∇̃�))T

R= (0;−ghSfx;−ghSfy; 0)T

(3)

where the bed slopes are functions of the bottom level z,

Sox=−@z
@x

; Soy=− @z
@y

(4)

and the friction losses are described in terms of the Manning’s roughness coe�cient n [18]:

Sfx=
n2u

√
u2 + v2

h4=3
; Sfy=

n2v
√
u2 + v2

h4=3
(5)

K is an empirical matrix that should not be confused with the turbulent di�usivity. In general,
K incorporates dispersion due to di�erential advection as well as turbulent di�usion [1]. All
the examples considered in this work are purely advective, that is, use K=0.
It is useful to rewrite (1) as

@U
@t
+

@F
@x
+

@G
@y
=S(x; y;U) (6)

The integral form of the equations over a �xed volume �,

@
@t

∫
�
U d� +

∫
�

(
@F
@x
+

@G
@y

)
d�=

∫
�
S d� (7)

that, after application of Gauss’s theorem to the second integral leads to

@
@t

∫
�
U d� +

∮
@�
(En) dl=

∫
�
S d� (8)
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in which E is the 4× 2 �ux tensor E=(F;G); n is the unit outward normal vector to the cell
so that En=Fnx +Gny. @� denotes the surface surrounding the volume �.

NUMERICAL METHOD

In the two-dimensional approach presented in this work, the spatial domain of integration
is covered by a set of unstructured triangular cells, and a cell-centred �nite volume method
is formulated where all the dependent variables of the system are represented as piecewise
constant per cell. A discrete approximation of (8) is applied in every cell �i at a given time so
that the volume integrals represent integrals over the area of the cell and the surface integrals
represent the normal �ux through the cell boundaries. Denoting by Ui the cell-average value
of the conservative variables in cell �i at a given time, from (8) the following conservation
equation can be written for every cell:

@Ui

@t
Ai +

∮
@�
(En) dl=

∫
�
S d� (9)

where Ai is the area of the cell �i. The normal �ux at the edge of the cells is approxima-
ted by ∮

@�i

(En) dl ≈
NE∑
k=1
(�En)i; k lk ; (�En)i; k =(Ej − Ei)ni; k (10)

as a starting point for the derivation of the �rst-order �ux di�erence splitting technique, where
k represents the index of the edge shared between cells �i and �j, the vector ni; k is the unit
outward normal in cell �i on edge k, lk is the length of the edge k, (Figure 1), (�En)i; k is the
numerical �ux di�erence across the cell edge, Ej and Ei are evaluated at cells j and i, and NE
is the number of edges that de�ne the cell. The problem is then reduced to a one-dimensional
Riemann problem projected in the direction ni;k at each cell edge [24]. Roe [25] de�ned an
approximated �ux Jacobian, J̃ni; k for the Euler equations, and an approximate �ux Jacobian

Figure 1.

Copyright ? 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2006; 52:1059–1092



1064 J. MURILLO ET AL.

for the coupled system shallow �ow=solute transport can be de�ned [23],

�(En)i; k = J̃ni; k �Ui; k (11)

with the following eigenvalues:

�̃1i; k = (ũ · n+ c̃)i; k

�̃2i; k = (ũ · n)i; k

�̃3i; k = (ũ · n − c̃)i; k

�̃4i; k = (ũ · n)i; k

(12)

and the corresponding eigenvectors

ẽ1i; k =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1

ũ+ c̃nx

ṽ+ c̃ny

�̃

⎞⎟⎟⎟⎟⎟⎟⎟⎠
i; k

; ẽ2i; k =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0

−c̃ny

c̃nx

0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
i; k

; ẽ3i; k =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1

ũ − c̃nx

ṽ − c̃ny

�̃

⎞⎟⎟⎟⎟⎟⎟⎟⎠
i; k

; ẽ4i; k =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0

0

0

1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
i; k

(13)

where

ũi; k =
ui

√
hi + uj

√
hj√

hi +
√

hj
; ṽi; k =

vi
√
hi + vj

√
hj√

hi +
√

hj

c̃i; k =

√
g
hi + hj

2
; �̃i; k =

�i
√
hi + �j

√
hj√

hi +
√

hj

(14)

Following a �ux di�erence procedure, the di�erence in vector U across the grid edge is
projected onto the matrix eigenvectors basis as

�Ui; k =
4∑

m=1
(�ẽ)mi; k (15)

where the expression of coe�cients �m
i; k are

�1;3i; k =
�hi; k

2
± 1
2c̃i; k

(�qi; k − ũi; k�hi; k)ni; k ; �2i; k =
1
c̃i; k
(�qi; k − ũi; k�hi; k)ni; kt

�4i; k = �(h�)i; k − �̃(�h)i; k

(16)

where q=(qx; qy) and nt =(−ny; nx) is the tangential vector to the edge.
The �ux di�erence across each edge k is split into contributions going in and out of

every cell

�(En)i; k =
4∑

m=1
(�̃�ẽ)−m

i; k +
4∑

m=1
(�̃�ẽ)+m

i; k (17)
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according to the sign of the eigenvalues of the normal �ux Jacobian, where �̃±m= 1
2(�̃

m±|�̃m|),
and, for the updating of every cell, only the in-going contributions generated at the edges
surrounding it are of interest.
The discretization of the bottom elevation source terms is successfully constructed when

it ensures an exact balance between �ux gradients and bed variations [26, 27]. It has been
demonstrated that, in �rst-order �nite volume schemes, if the upwind technique is applied
to the �ux and bottom terms, in the case of still water, equilibrium is maintained for the
water level surface [18, 28]. The same technique extended to the coupled system of equations
provides equilibrium for the solute concentration [23]. For that purpose, the bottom source
term is �rst approximated projecting it onto the basis of eigenvectors:∫

�
B d� ∼=

NE∑
k=1
Bi; k =

NE∑
k=1

4∑
m=1
(�ẽ)mi; k lk (18)

where

�l
i; k =

1
2 c̃i; k(−�zi; k); �2i; k =0; �3i; k =−�1i; k ; �4i; k =0 (19)

and next splitting it in in-going and out-going contributions as was done with the �ux
di�erence:

4∑
m=1
(� ẽ)i; k lk =

4∑
m=1
(�−ẽ)mi; k lk +

4∑
m=1
(�+ ẽ)mi; k lk (20)

with �±m = 1
2�

m(1± sgn(�̃m)).
At this point, Equation (9) becomes

�Ui

�t
Ai +

NE∑
k=1

4∑
m=1
((�̃� − �) ẽ)−m

i; k lk =
∫
�
(R+D) d� (21)

that can be rewritten in a more compact form:

�Ui

�t
Ai +

NE∑
k=1

4∑
m=1
(�∗ �U)mi; k lk =

∫
�
(R+D) d� (22)

where �∗m
i; k =(�̃ − �=�)−m

i; k and �Um
i; k =(�ẽ)

m
i; k . When �m

i; k is nil, �
∗m
i; k �(U)= − (�e)mi; k .

The friction term R is discretized in a semi-implicit pointwise manner to avoid numerical
oscillations [19], Ri=Ri(�) (explicit with �=1, and implicit with �=0). The di�usion term
is discretized implicitly [23] so the �nal expression for the complete numerical scheme is

Un+1
i =Un

i −
NE∑
k=1

4∑
m=1
(�∗�U)mi; k

lk
Ai
�t + (Ri(�) +Dn+1

i )�t (23)

We shall concentrate on the bed slope source terms letting aside the considerations concern-
ing the friction and di�usion terms. In absence of friction and solute di�usion, the scheme
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can be expressed as

hn+1
i = hn

i +�t
NE∑
k=1
	h

i; k ; 	h
i; k =

4∑
m=1

 m;h
i; k ;  m; h

i; k =−(�∗�U1)−m
i; k

lk
Ai

(hu)n+1i = (hu)ni +�t
NE∑
k=1
	hu

i; k ; 	hu
k;i =

4∑
m=1

 m;hu
i; k ;  m; hu

i; k =−(�∗�U2)−m
i; k

lk
Ai

(hv)n+1i = (hv)ni +�t
NE∑
k=1
	hv

i; k ; 	hv
i; k =

4∑
m=1

 m;hv
i; k ;  m; hv

i; k =−(�∗�U3)−m
i; k

lk
Ai

(h�)n+1i = (h�)ni +�t
NE∑
k=1
	h�

i; k ; 	h�
i; k =

4∑
m=1

 m;h�
i; k ;  m; h�

i; k =−(�∗�U4)−m
i; k

lk
Ai

(24)

It must be signalled that (24) is formally di�erent to the usual �nite volume formulation
in which numerical �uxes are de�ned at the edges. In (24), �uxes and slope source terms
participate in a uni�ed form that is controlled by the rede�ned eigenvalues �∗m

i; k .
It is well known that, when using Roe’s linearization, the approximate eigenvalues must be

modi�ed in the case of sonic rarefactions in order to avoid nonphysical solutions. According
to the ideas proposed by Harten and Hyman [29]:

�=
�m
j (ni; k)− �̃m

i; k

�m
j (ni; k)− �m

i (ni; k)

�̃m
i; k =

⎧⎨⎩
�m
i (ni; k)� if �m

i (ni; k)¡0¡�m
j (ni; k) for m=1 or 3

�̃m
i; k otherwise

(25)

where �m
i = �m

i (Ui) and �m
j = �m

j (Uj).
This correction modi�es the waves at the cell edges and, therefore, a corresponding modi-

�cation of the rede�ned eigenvalues becomes necessary

�∗m
i; k =

⎧⎪⎪⎨⎪⎪⎩
(
�m
i − �m

i; k

�m
i; k

)
� if �m

i (ni; k)¡0¡�m
j (ni; k) for m=1 or 3

�∗m
i; k otherwise

(26)

where � is computed as in (25). This is the only way to ensure a conservative entropy
satisfaction when sonic rarefactions occur. An example of the necessity of applying this
correction will be shown in the ‘numerical results’ Section.

SOLUTE CONCENTRATION CONSTRAINTS

In the coupled system of equations (2), the conserved variable is h� so that the value of solute
concentration � is computed as a ratio between the conserved solute mass and the water depth.
This can lead to unbounded and unrealistic values in the �nal solute concentration when the
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Figure 2. Sketch of two possible situations that may lead to oscillations
in the solute concentration solution.

eigenvalues associated to the normal velocity do not update the solution in the future time:

�̃−2
i; k = �̃−4

i; k =(ũn)
−
i; k =0 (27)

as solute transport is exclusively produced by the water mass movement. Two cases which
produce oscillations in the solute concentration have been identi�ed.
Figure 2(a) describes one case: the water depth h and solute concentration � at cell i is

bigger than the solute concentration value at cell j and the incoming normal Roe’s averaged
velocity to cell i is nil, (ũn)−i; k =0, which implies 	

h�
i; k = �̃i; k	h

i; k . Furthermore, the updating
water mass �ux to cell i is negative, 	h

i; k¡0, so that hn
i ¿hn+1

i , as in this case only the
interaction between cells i and j is allowed. The updated value of solute concentration at cell
i must be bounded by:

�n+1
i =

(h�)ni +	
h�
i; k �t

hn+1
i

=
(h�)ni + �̃i; k	h

i; k �t

hn+1
i

= r�n
i + (1− r) �̃i; k¡�n

i ; r=
hn
i

hn+1
i

¿1 (28)

which is equivalent to

(1− r) �̃i; k¡(1− r)�n
i (29)

and considering that (1− r)6 0

�̃i; k¿�n
i (30)

condition that can never be met as

�̃i; k¡�max =�n
i (31)

Figure 2(b) describes the other case: the solute concentration � at cell i is smaller than the
solute concentration � at cell j. Also (ũn)−i; k =0 and 	

h
i; k¡0. The value of updated solute

concentration at cell i must be bounded by the minimum concentration �n
i , and according to

the de�nitions in (28):

�n+1
i = r�n

i + (1− r)�̃i; k¿�n
i (32)

This result can be rewritten as

(1− r) �̃i; k¿(1− r)�n
i (33)
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or considering that (1− r)6 0

�̃i; k¡�n
i (34)

condition that can never be met as

�̃i; k¿�min =�n
i (35)

In this work, a strategy that avoids these situations by enforcing a conservative redistribution
of the solute mass �uxes is presented. A virtual solute concentration �V is de�ned for that
purpose at each cell edge between cells i and j

�V =

{
max{�i; �j} if ��n

i; k¡0

min{�i; �j} if ��n
i; k¿0

(36)

with ��n
i; k =�n

j −�n
i , so that, in general, in those cases where 	

h
i; k¡0 and �̃−4

i; k =0 the solute
mass �ux updating cell i coming from edge k, 	h�

i; k , and that updating cell j coming from the
same edge interface, 	h�

i; k , are rede�ned as

	h�
i; k =�V	h

i; k

	h�
j; k =	

h�
j; k + (�̃k − �V )	h

i; k rA; 	h
i; k¡0; �−4

i; k =0
(37)

with rA=Ai=Aj, to preserve conservation.

NUMERICAL STABILITY

The basic method used to determine the maximum time step size compatible with numerical
stability in hyperbolic problems only addresses the linear homogeneous case and takes into
account the in�uence of the eigenvalues of the Jacobian matrix and the mesh geometry [30].
The in�uence of the source terms is not traditionally considered when the time step is chosen.
In this paper, the in�uence of those terms within the coupled system will be studied. In
general, to generate the criterion for calculating the maximum time step size compatible with
numerical stability in a hyperbolic problem, a homogeneous linear scalar equation is used:

@u
@t
+ [∇̃u=0 (38)

with [=(�x; �y). The updating formula for each cell i using the �rst-order upwind �nite
volume method is

un+1
i = un

i −
NE∑
k=1
([n)−i; k�ui; k�t

lk
Ai

(39)

To ensure conservation, it is necessary that the cells in the domain are such that the following
condition holds [24]:

NE∑
k=1
ni; k lk =0 (40)
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Figure 3. Mesh discretization.

This can be illustrated using the upwind �nite volume scheme. The scheme is conservative if
the sum of the total computed waves at the internal cell interfaces is equal to the balance of
�uxes that cross the boundary of the domain, that is to say

Ncell∑
i=1

∑
k∈k�

(([n)− �u l)i; k︸ ︷︷ ︸
C�

=
∫


([n)u dl︸ ︷︷ ︸

C


=
Ncell∑
i=1

∑
k∈k

(([n)−u l)i; k︸ ︷︷ ︸

ingoing �ow

+ (([n)+u l)i; k︸ ︷︷ ︸
outgoing �ow

(41)

where k� are the edges inside the domain, and k
 are the edges that shape the contour
boundary. For the sake of clarity, (41) will be proved in the domain represented by Figure 3.

To illustrate this example, the notation used for the updating waves at the edges, i,k, will
be changed by i, j, where j is the cell that shares the interface edge k. The total wave
contributions at the inner cell edges is equal to

C�= (([n)− �u l)1;2 + (([n)− �u l)1;3 + (([n)− �u l)1;4

+ (([n)− �u l)2;1 + (([n)− �u l)3;1 + (([n)− �u l)4;1

+ (([n)− �u l)4;5 + (([n)− �u l)5;4 (42)

where �ui; j = uj −ui, ni; j is the normal vector to the edge k directed from i to j, and li; j is the
length of the edge. Taking into account that ([n)−i; j − ([n)−j;i=([n)i; j, ([n)−i; j+([n)+i; j=([n)i; j
and �ui; j=−�uj; i, (42) becomes

C�=(([n) �u l)1;2 + (([n) �u l)1;3 + (([n) �u l)1;4 + ([n) �u l)4;5 (43)

which can be rewritten as

C�=−([ u1)
4∑

k=2
(nl)1; k + (([n)l)1;2u2 + (([n)l)1;3u3 + (([n)l)1;4u4 + (([n) �u l)4;5 (44)

Applying (40), the �rst term in (44) disappears, and

C�=(([n)l)1;2u2 + (([n)l)1;3u3 + (([n)l)1;4u4 + (([n) l)4;5� u4;5 (45)

On the other hand, the �ow that crosses the contour can be computed as

C
=
∑
k

(([n)l)2; ku2 +

∑
k

(([n)l)3;ku3 +

∑
k

(([n)l)4;ku4 +

∑
k

(([n)l)5;ku5 (46)
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and, using (40): ∑
k1
(nl)i; k +

∑
k�
(nl)i; k =0 (47)

then, (46) can be rewritten

C
=−(([n)l)2;1u2 − (([n)l)3;1u3 − (([n)l)4;1u4 − (([n)l)4;5u4 − (([n)l)5;4u5 (48)

or

C
=(([n)l)1;2u2 + (([n)l)1;3u3 + (([n)l)1;4u4 + (([n)l)4;5�u4;5 (49)

which is equal to (45), showing that condition (40) is essential to ensure conservation.
The updating formula in (39) can also be expressed in a compact form as

un+1
i = un

i −
NE∑
k=1

�i; k�ui; k (50)

where �i; k =�t([̃n)−i; k(lk=Ai) is a dimensionless quantity. To ensure numerical stability, �i; k
must be limited [31] by

−16 �i; k 6 0 (51)

Given a grid mesh and �ow conditions, (51) requires reducing the value of the time step
to meet the stability criterion. As an example, let us assume that the uj values are equal at
all the surrounding cells to cell i, but di�erent to ui, with ui¿uj and uj¿0. Using (40) in
the case of a triangular cell, the incoming contributions to cell i described in (39) can be
bounded:∣∣∣∣∑

k
([n)−i; k lk�ui; k�t

∣∣∣∣ = ∣∣∣∣∑
k
(([n)−l)i; k

∣∣∣∣ �uo�t6 max
k
(|[n|l) �uo�t=(|[n|l)kmax�uo�t (52)

where �uo= �uk . And similarly in the case of a rectangular cell∣∣∣∣∑
k
(([n)−l)i; k

∣∣∣∣ �uo�t6 2 max
k
(|�n|l)�uo�t (53)

since the updating contributions to a cell can at most enter through two edges.
Furthermore, the updating �ux crossing edge k between cells i; j must be limited by the

quantity that ensures that the �nal state at both cells is included between the initial values.
This quantity can be computed as �uo ·min{Ai; Aj}, where Ai and Aj are the areas of cells i
and j, respectively. Since all the incoming �uxes to cell i can be bounded according to (52),
the following condition is stated:

max
k
(|[n|l)�uo�t6 �uo ·min{Ai; Aj}kmax (54)

This leads to a stability constraint de�ned by cells. It is more feasible to de�ne at each edge
the quantity [31]

�tk =
min{Ai; Aj}
(|[n|l)k (55)
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for a triangular cell, or in the case of rectangular mesh

�tk =
min{Ai; Aj}
2(|[n|l)k (56)

and to search the minimum among all of them, as a global limit for the time step in the
mesh. This can be seen as the 2D extension of the classical Courant–Friedrichs–Lewy (CFL)
condition for numerical stability of an explicit scheme [32].
Condition (56) can be generalized to a system of equations by extending the search over

all the eigenvalues of the Jacobian as they play the role of advection velocities. In that case:

�tmax; k =min

{
min{Ai; Aj}
(|�̃m(n)|l)i; j

}
m=1;:::; N�

�tmax =min{�tmax; k}k=1;NEDGE (57)

where the N� is the number of eigenvalues of the Jacobian matrix and NEDGE is the number
of interior edges in the mesh. Also, a reduction factor of 2 must be applied if rectangular
cells are used. Using (57), the following condition is ensured:

−16 �mk 6 0; m=1; : : : ; N� (58)

where �k =�t([m(n))−k (lk=Ai), keeping the numerical scheme stable [31].
The limits given by (55) or (57) over the time step can control properly the numerical

stability when dealing with gradually varied functions in which �u¡ui; uj. In general cases
in which either the jump in the variable is �nite or one of the values ui; uj may be zero at
some cells, the restriction may not be su�cient and (54) must be rede�ned as follows:

(|[n|l)�uo�t6 min{�uo; ui; uj} ·min{Ai; Aj} (59)

or

(|[n|l) �uo�t6 	�uomin{Ai; Aj} (60)

with:

	=
min{ui; uj; �uo}

�uo
; 06 	6 1 (61)

This leads to a stronger stability constraint de�ned by cells for those cases where 	 �=0

�tk = 	
min{Ai; Aj}
(|[n|l)k (62)

with a reduction factor equal to 2 in the case of rectangular cells. From (60), in the case of
	=0, the following well-known upwind condition over the updating �uxes derives:

([n)−k 6 0 (63)

that is independent of the time step and correctly discriminates the cell edges allowed to
transfer updating information into the cell. This can also be demonstrated considering the
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updating �uxes in the following case: assume the value of u at cell i is positive, ui¿0 and at
the other side of edge k, the value of u is uj=0. The updating �ux should lead to a decrease
in the magnitude of ui, from (50)

−�i; k�ui; k 6 0 (64)

and the �nal value at cell j would be uj¿ 0, from (50)

−�j; k�uj; k ¿ 0 (65)

As �ui; k¡0 and �uj; k¿0, (64) can be rewritten as

�i; k =(�n)−i; k
lk
Ai
�t6 0 (66)

and (65):

�j; k =(�n)−j; k
lk
Aj
�t6 0 (67)

both of them equivalent to (63).
The generalization to a system of equations provides a new condition:

�tmax;k = min

{
	
min{Ai; Aj}
(|�̃m(n)|l)k

}
m=1;:::;N�

	 = min
n

{
mini; j{Un; i; Un; j; |�Un|}

|�Un|
}
6 1; U=(U1; : : : ; Un; : : : ; Unc)T

�tmax = min{�tmax; k}k=1;NEDGE

(68)

This condition can lead to overly restrictive time step sizes as 	 tends to zero. Our goal is to
be able to rely on condition (57) for numerical stability even in presence of wetting=drying
processes such as those making 	 go to zero. These situations, based on (63), can be identi-
�ed by

�̃−m
k (n)6 0; m=1; : : : ; N� (69)

Equation (63) in the scalar case, or (69) in the case of systems will be used to design
an algorithm able to ensure stability using condition (57) for the time step. This will be
detailed in next section in the context of the coupled shallow-water transport system with
source terms.

STABILITY CRITERION: APPLICATION TO THE COUPLED SHALLOW-WATER
EQUATION IN REAL SCENARIOS

The stability region de�ned according to (57) and using the �m eigenvalues of the approximate
Jacobian, (12) is appropriate to accurately de�ne the time step in �ow problems where bed
slope source terms are not dominant and where there is a �xed �ow domain. But this stability
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region fails in the case of wetting=drying fronts, as reported [18] and (68) becomes necessary
to rede�ne the stability region. This can be re-expressed with the help of the rede�ned �∗m

k
eigenvalues, leading to

�tmax; k =min
{
	
min{Ai; Aj}
(|�∗m|l)i; k

}
m=1;:::;4

�tmax =min{�tmax; k}k=1;NEDGE

(70)

It must be signalled that in the set of conserved variables only water depth and solute mass
are relevant to compute the value of 	, as their positivity property must be guaranteed in all
cases:

	= min
{
min{hi; hj; |�h|}

|�h| ;
min{(h�)i ; (h�)j; |�(h�)|}

|�(h�)|
}

(71)

also, in wetting front advance, in which 	=0, and condition (69) must be applied as

�∗m
k 6 0; m=1; : : : ; 4 (72)

condition independent of the time step that plays the role of identifying the cell edges and
wave components allowed to enter updating information into the cell in case of a system
with source terms. This result includes the conditions de�ned to maintain equilibrium when
wetting=drying interfaces appear in cases of still water [18] and �ooding advance [19] where
a rede�nition of the bottom slopes was proposed to balance correctly the source terms. The
clean=mixed water fronts can be also included in the de�nition of (72), but in these cases,
where the water depth is positive in both sides of the edge k, it is su�cient to introduce the
corrections de�ned in (37).
The generation of new dry areas from initially wet zones leads to almost nil values of water

depth and solute mass during drying processes, generating values of 	� 1. The stability
criterion de�ned in (70), although su�cient to control numerical stability, leads to strong
restrictions in the magnitude of the time step and unacceptable computational costs in these
cases, requiring an alternative strategy to overcome this situation. The strategy presented in
this work is based on the rede�nition of the bottom slopes, which is equivalent to redistribute
the updating �uxes, by means of the dimensionless variable rt , which involves two local time
steps, �th;i and �th�;i and the global time step. The local time step �th;i is de�ned to force
nonnegative values of water depth at a new time level, hn+1

i at every cell i: �th;i is computed
involving the contributions from neighbour cells that extract mass, that is, that decrease the
water depth in the wet cell i. With reference to (24) �th;i is computed as

�th;i=− hn
i∑NE

k=1 	
h
i; k

; 	h
i; k 6 0 (73)

The local time step �th�;i is generated to avoid negatives values of solute mass, and is
computed as:

�th�;i=− (h�)ni∑NE
k=1 	

h�
i; k

; 	h�
i; k 6 0 (74)
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It is worth noting that the quantities de�ned in (73) and (74) are always positive due to
the condition on the contributions in the denominator. Finally, the redistribution factor is
computed as

rt;i=
�tv
�tmax

6 1; �tv= min{�tmax;�th;i;�th�;i} (75)

where �tmax as in (57). When in the cell i the ratio rt;i¡1, we propose to rede�ne the
updating �uxes to cells i and j at those k edges where 	h

i; k 6 0 according to:

	h
i; k =!h1; 	h�

i; k =!�1

	h
j; k =	

h
j; k +!h2; 	h�

j; k =	
h�
j; k +!�2

	hu
i; k =	

hv
i; k =0

(76)

where, to preserve conservation, the quantities !h1, !h2, !�1, !�2 are

!h1 =	h
i; k rt;i ; !h2 =	h

i; k(1− rt;i)rA

!�1 =	
h�
i; k rt;i ; !�2 =	

h�
i; k(1− rt;i)rA

(77)

It is worth noting, for the sake of clarity, that the adjusted wave speeds �∗m
k participate

directly in the identi�cation of the updating cell edges and wave components as well as in
the computation of the updating quantities (24). However, it is important to stress that the
goal of this method is to apply the largest possible time step compatible with stability, hence,
condition (57) is established as the target value.
Also, it is important to remark, that the discrete source term coe�cients �1k and �3k do not

participate in the water and solute mass conservation equations when both associate eigen-
values �̃1i; k and �̃3i; k are negative. This situation can be de�ned when the local normal Froude
number is

Frk =
∣∣∣∣ ũnc̃

∣∣∣∣
k
¿ 1 (78)

COUPLED CONSERVATIVE SCHEME (CCS)

In order to handle transient inundation �ows with solute transport properly, a modi�cation of
the numerical model de�ned by Equation (24), using the less restrictive time step limit (57),
involving conditions required to stay conservative and stable have been presented. Finally, a
complete summary of the steps conforming the CCS is presented including new conditions
that will be explained below.

1. Compute the m �∗m
k values and the respective  m;h

i; k ,  m;hu
i; k ,  m;hv

i; k  m; h�
i; k for each m

wave at each edge cell k, as in (24), taking into account the entropy correction de�ned
in (26).

2. If hn
i or h

n
j are zero, Frk¡1 and �∗m

k ¿0, set

 m;h
i; k =  m;hu

i; k =  m;hv
i; k =  m;h�

i; k =0 and impose (uini; k)n+1 = (ujni; k)n+1 =0 (79)
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3. Update each 	i; k with its respective  i; k’s.
4. If hn

i ¿0 and hn
j¿0, 	

h
i; k¡0 and �−4

k =0, rede�ne the respective 	h�
i; k and 	

h�
j; k as indicated

in (37).
5. Compute �tmax as in (57).
6. For each cell i, de�ne rt;i and, if rt;i¡1, rede�ne the updating �uxes as in (76), setting,
at those edges where 	h

i; k 6 0,

(uini; k)n+1 = (ujni; k)n+1 =0 (80)

7. Update the conserved variables hn+1
i , hun+1

i , h�n+1i , h�n+1
i .

8. If hn+1
i ¡0 or (h�) n+1

i ¡0 set �tmax = 1
2 �tmax and return to point 6.

9. At each edge: if hi=0 and hj¿0, and zi¿zj+hi=0 set:

ujnj; k =0 (81)

The reduction in the size of the time step in 8 is necessary in drying processes starting from
almost null values of water depth, where the rede�nition of the bottom slopes does not ensure
positive values of water depth and solute mass. This reduction has an irrelevant computational
cost, generating always a solution for the future time step. Also the imposition of zero normal
velocities in 2, 6 and 9 is required to keep the numerical scheme conservative, as it avoids
�uxes crossing those edges acting like solid boundaries.

NUMERICAL RESULTS

Circular dam break with nonuniform solute concentration

In order to analyse the quality of the numerical solution of the water �ow and solute con-
centration variation in presence of strong gradients of water depth and solute mass, a circular
dam break problem with nonuniform solute concentration is performed. A square frictionless
and �at domain, 4000m× 4000m, is divided in triangular cells, created by dividing square
elements along the top-left and top-right diagonal to the bottom, as Figure 4 shows, with
l=25m. On a �ner mesh the results are of better quality.

Figure 4. Cell triangulation.
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Figure 5. 3D view of the water level surface and a contour plot of the solute concentration:
(a) for case (i); and (b) for case (ii).

The discontinuous initial water depth is de�ned by a radial function

h(r)=

{
10; r¡800

5; r¿ 800
(82)

where r is the distance from the centre of the domain. For that initial water-depth distribution
two solute distributions are de�ned, the �rst test case (i) is

�(r)=

{
0; r¡800

100; r¿ 800
(83)

and the second test case (ii) is

�(r)=

{
100; r¡800

0; r¿ 800
(84)

Figure 5(a) displays a 3D view of the water level surface and a contour plot of the solute
concentration for case (i) and Figure 5(b) displays the contour plot for case (ii).
These cases can be used to illustrate the overshoots and undershoots produced in the solute

concentration when not applying (37) in presence of discontinuous water depth and solute
concentration. Figure 6(a) displays the result for the maximum and minimum solute concen-
tration when the dam break simulation is performed for case (i) in function of the simulated
time. The maximum solute concentration is correctly bounded while the minimum solute con-
centration is smaller than the initial one. When the technique presented in (37) is applied,
the minimum value remains bounded along the simulation, preserving conservation. On the
other hand, Figure 6(b) shows the maximum and minimum solute concentration for case (ii)
showing how the maximum allowable value in the solute concentration is overtopped. If the

Copyright ? 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2006; 52:1059–1092



A CONSERVATIVE 2D MODEL OF INUNDATION FLOW 1077

Figure 6. Maximum and minimum numerical solute concentration values in the dam break simulation
using the basic scheme and controlling the solute concentration limits.

Figure 7. 3D view of the water level surface and a contour plot of the solute concentration:
(a) for case (i); and (b) for case (ii) at t=50 s.

technique presented in (37) is used, no overshoots in the solute concentration are observed
along the simulation. Figure 7(a) and (b) display a 3D view of the dam break simulation
at time t=50 s and a contour plot of the solute concentration for case (i) and case (ii),
respectively.

Static wet=dry boundary

In this numerical example, a simple case of still water over a variable bottom is anal-
ysed. Within the same closed-square basin of the previous test case, a square solid prism
is placed surrounded by still water with concentration. The exact solution in this case is triv-
ial and consists of unchanged initial conditions. The initial water surface level and the solute
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Figure 8. 3D view of the water depth and contour plot of the solute concentration using: (a) the basic
scheme; and (b) including condition (72) after any number of time steps.

Figure 9. Initial free surface and water depth pro�le for the parabolic basin test.

concentration distribution functions are given by

z(x; y)=

{
100; −1006 x6 100; −1006y6 100

0 otherwise
(85)

h(x; y)=

{
0; −1006 x6 100; −1006y6 100

1 otherwise
(86)

�(x; y)=

{
0; −1006 x6 100; −1006y6 100

100 otherwise
(87)

The same mesh used of the previous test case is applied in this case. Figure 8(a) shows a 3D
view of water depth function and a contour plot of the solute concentration using the basic
scheme after one time step. It can be observed how the initial constant water depth and solute
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Figure 10. Water and solute mass error during wave expansion controlling wetting=drying
advance and using the basic method.

Figure 11. Water and solute mass error during wave expansion controlling wetting=drying
advance and using the basic method.

Figure 12. Maximum and minimum solute concentration along the simulation.
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Figure 13. Simulation time step size with CCS and with condition (70).

Figure 14. Mass conservation error when no entropy correction is used and following condition (26).

concentration are distorted. When condition (72) is applied, the initial solution is conserved,
for both water depth and solute concentration at any later time, as Figure 8(b) shows.

Long wave resonance in a parabolic basin

The analytical solution of a long wave, driven by gravity and resonating in a frictionless, dry
circular parabolic basin was presented by Thacker [33] for the shallow-water equations, where
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Figure 15. Water elevation surface (in metres): exact and simulated for times 1=4T , 2=4T , 3=4T , T ,
3=2T , 2T , 5=2T , 3T , 7T=2 and 4T .
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Figure 16. Water depth at the central point, exact and computed with CCS at r=0.

the free surface displacement is given by


(r; t)= 
o

(
(1− A2)1=2

1− A cos!t
− 1− r2

a2

{
1− A2

(1− A cos!t)2
− 1
})

(88)

and the bottom elevation is given as

z(r; t)=−
0

(
1− r2

a2

)
(89)

with

A=
a4 − r4o
a4 + r4o

; !=
1
a

√
8g
o (90)


o is the centre point water depth, r is the distance from the centre point, a is the radial distance
from the centre point to the zero elevation on the shoreline and ro is the distance from the
centre point to the point where the water depth is initially nil. Those values are represented
in Figure 9. The domain shape of the two previous examples is used again and the numerical
values are 
o=20:0m, ro=1200m, a=1500m. The domain is divided in triangular cells
with l=25m generated as in the previous sections.
The water surface movement will be simulated together with an initial solute concentration:

�(r; to)=�o exp
(

− r
2ro

)
(91)

There is no analytical solution for the solute concentration evolution in time but, if no di�usion
is assumed, the solution for each T oscillation period will be

�(r; t=TK)=�o exp
(

− r
2ro

)
; K =1; : : : ;∞ (92)
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Figure 17. 3D view for the water level surface (left side) and 3D view of the solute concentration
(right side) computed at times 1=4T , 2=4T , 3=4T and T .
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Figure 18. Solute distribution results and exact solution at times T , 2T , 3T and 4T .

The numerical experiment is performed using �o=1. This test case illustrates the concepts
described in this paper, as it includes wetting=drying fronts and the generation of dry regions
from wet areas. In particular, the advance of the wetting=drying front is produced in the �rst
half period, during the wave expansion, while during the wave contraction both wetting=drying
fronts and drying process are present. Figure 10 shows the water and solute mass conservation
errors versus time during the wave expansion using the proposed method, and neglecting
condition (72), that is considering nil the values of water depth and solute mass if they
become negative. Only considering (72), positivity is guaranteed for both water and solute
mass ensuring conservation at the same time.
Figure 11 displays the water and solute mass errors if the simulation progresses until t=4T

using CCS and using the basic method that puts to zero the values of water depth and solute
mass if negative. In this case, the proposed method conserves mass during all the simulation.
If no special techniques are applied in the wetting advance or in the drying processes, the
water mass error grows continuously and, after a short time, the solute mass error goes out
of range.
Figure 12 shows both maximum and minimum solute concentration values as a function of

the periods covered by the simulation, and how almost no numerical di�usion is produced.
Figure 13 provides the simulation time steps used by the proposed CCS and by means of
a more restrictive condition in (70), showing important di�erences in the magnitude. The
�uctuating values in the time step size when using condition (70) are a consequence of
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Table I. Maximum and minimum water depth elevations and concentrations at
times 1=4T , 2=4T , 3=4T and T .

Time Max d (m) Min d (m) Max � Min �

1=4T 1:618 −1:864 99:961 2:927
2=4T 8:576 −7:008 99:961 3:286
3=4T 8:536 −2:123 99:930 3:294
T 9:019 −6:576 99:834 3:298

the presence of drying cells. Although they do not a�ect the accuracy of the solution, they
signi�cantly in�uence the e�ciency of the algorithm. Figure 14 displays the mass conservation
error generated when no entropy correction is done over the source terms following condition
(26), leading to a continuous growth of this function.
Figure 15 shows the water depths given by the exact solution and by the proposed method

at times, 1=4T , 2=4T , 3=4T , T , 3=2T , 2T , 5=2T , 3T , 7T=2 and 4T . The simulated results
prove in every case in good agreement with the analytical solution, including water depth
and inundated area, even in the fourth oscillation. Figure 16 displays the water depth at the
central point, r=0, as function of the oscillation period, T. The computed solution deviates
from the analytical solution as time increases, but the error grows slowly. Figure 17 displays
3D views for the water level surface and for the solute concentration computed at times
1=4T , 2=4T , 3=4T and T , and how the symmetry of the problem is kept along the simulation.
Figure 18 shows the comparison between the exact and numerical solution for the solute
concentration distribution at times T , 2T , 3T and 4T . Better accuracy in the �nal solution can
be achieved by reducing the size of the cells generating a better representation of the bottom
elevation (Table I).

APPLICATION: TOCE RIVER TEST CASE

The Toce river is a watercourse of the occidental Alps, in Italy. A scaled physical model was
built at the ENEL laboratory in Milan with a horizontal scale factor of 1:100 and approximate
dimensions of 50× 11m. The model reproduces a reach of the riverbed, the �oodplain, a
lateral reservoir designed for �ood control purposes and buildings. The friction was modelled
using n=0:0162 sm−1=3. Moreover the model reproduces details of the geometry. On the
upstream side of the model, a tank was installed to supply the in�ow of water in the form
of a discharge hydrograph, characterized by a sharp peak shown in Figure 19.
The bed valley was initially dry and the subsequent �ood wave produced the overtopping

of the reservoir. Several water depth probes were situated in di�erent places along the river
bed and in the valley, as Figure 20 displays.
In this case, the �ooding presents various transitions from subcritical to supercritical, and

the wetting=drying techniques presented have to cope with high variable bed regions, specially
in a initially dry reservoir, which is overtopped. Figure 21 shows good agreement between
measured and computed data in the probes located at di�erent points along the domain.
In this example, the mesh has been adapted to the contour of the buildings represented in

the laboratory model as cubes, to prove that the method copes correctly with high slopes.
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Figure 19. Discharge hydrograph. Toce river test case.

Figure 20. Toce river geometry and location of probes (upper) and detail of the mesh in the
inlet region (lower) with 29 596 cells.

After the peak discharge, the discharge begins to decrease, and the buildings located close to
the inlet boundary are high enough not to be overtopped. When the conditions discussed for
wetting=drying cases are not applied, the method itself cannot manage these cases correctly.
Figure 22 shows the results at time 180 s when the method is applied to the Toce �ooding,
using condition (57) for the time step. The left side of the �gure corresponds to the application
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Figure 21. Comparison between numerical and measured data for di�erent probes.
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Figure 21. Continued.
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Figure 22. Values of water depth (in metres) at time 180 s, using CCS (left), and only making
null negative values of depth (right).

of CCS and the right side to the strategy of making nil the negative values of depth if they
appear. Not only the mass error is unacceptable, but also the buildings are overtopped.
No solute concentrations were measured in this test case. However, we have simulated

the sudden release of a certain amount of solute as the �ooding wave progresses, exactly
at t=20 s, at the location shown in Figure 23(a). The evolution of the solute concentra-
tion distribution at times t=23, 26 and 30 s are displayed in Figure 23(b), (c) and (d),
respectively.
Although no experimental data are available to state the accuracy of the solute transport in

this case, the solution is well behaved and remains conservative in water mass as well as solute
mass as time progresses. In absence of di�usion, the purely advective transport relies on the
quality of the velocity �eld. It is important to stress, however, that good quality experimental
data are in progress in order to validate this method in complex cases of unsteady �ow with
transport.

CONCLUSIONS

An explicit upwind scheme has been used to solve a 2D coupled shallow-water=solute transport
system of equations in complex situations. The formulation follows a conservative form where
the updated variables are water depth, unit depth-averaged discharges and solute mass per unit
area. The �nite volume numerical technique has been designed to deal with both triangular or
quadrilateral grids from an unstructured point of view. The transfer of information between
cells has been formulated according to an algorithm based on cell interfaces and following a
wave propagation point of view much closer to the physical meaning of the equations than
the usual numerical �ux. The upwind discretization has been applied to the coupled scheme
in a compact form that uni�es the treatment of �ux derivatives and bed slope source terms
by means of a rede�nition of the advection velocities.

Copyright ? 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2006; 52:1059–1092



1090 J. MURILLO ET AL.

Figure 23. Evolution of an instantaneous injection of solute at time: (a) 20 s, and evolution
at times (b) 23; (c) 26; and (d) 30 s.

These ideas have been helpful in the analysis of the numerical stability constraints. Starting
by the simplest scalar homogeneous case, the stability constraints have been revisited and the
basic CFL condition has been �rst properly stated for triangular and quadrilateral grids in the
basic case and replaced by a stronger condition linked to the bed variations and the transient
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character of the �ow over a dry bed. The presence of these �ow features imposes a heavier
restriction on the time step size that can lead to very ine�cient computations. A technique to
avoid the necessity of reducing the time step that, at the same time, prevents instability and
ensures conservation at all times has been proposed.
On the other hand, it has been realized that the solute transport advancing fronts in the

shallow-water body require special numerical treatment in some cases, particularly when the
solute concentration discontinuity is located at the same place of a water-depth discontinuity.
Although the numerical solutions for the conserved variables supplied by the numerical scheme
are always monotone, this is not the case for the solute concentration. An e�cient way to
avoid unbounded values of solute concentration within the framework of the scheme has been
presented.
Numerical techniques developed in the last decade to solve realistic problems do not always

face properly source term discretization, treatment of wetting–drying fronts or the speci�c
numerical stability restrictions. This work completes the requirements on a �rst-order upwind
conservative scheme to be used with success in Hydraulic Engineering.
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